
1

Possibilistic Clustering Enabled Neuro Fuzzy Logic
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Abstract—Artificial neural networks are a dominant force in
our modern era of data-driven artificial intelligence. The adaptive
neuro fuzzy inference system (ANFIS) is a neural network based
on fuzzy logic versus a more traditional premise like convolu-
tion. Advantages of ANFIS include the ability to encode and
potentially understand machine learned neural information in the
pursuit of explainable, interpretable, and ultimately trustworthy
artificial intelligence. However, real-world data is almost always
imperfect, e.g., incomplete or noisy, and ANFIS is not naturally
robust. Specifically, ANFIS is susceptible to over inflated uncer-
tainty, poor antecedent (fuzzy set) data alignment, degenerate
optimization conditions, and hard to interpret logic, to name a
few factors. Herein, we explore the use of possibilistic clustering
to identify outliers, specifically typicality degrees, to increase the
robustness of ANFIS; or any fuzzy logic neuron/network at that.
Experiments are presented that demonstrate the need and quality
of the proposed solutions in the pursuit of robust interpretable
machine learned neuro fuzzy logic solutions.

I. INTRODUCTION

The world is once again fixated on neural nets, due in large
part to their recent performance leaps across numerous appli-
cation domains; computer vision, natural language processing,
etc. On the other hand, modern deep learning has a list of
equally deep concerns, e.g., are we really just engineering ma-
chines that discover desirable correlations versus underlying
causations [1]. Regardless, in all this excitement the field has
more-or-less converged into a single mathematical foundation,
convolution; which powers more complicated constructs like
residual and recurrent networks. Furthermore, the vast majority
of these deep nets have given rise to black box solutions–
that have little emphasis on explainability or interpretability.
Herein, we focus on a non-convolutional contribution from the
field of fuzzy set theory, the adaptive neuro-fuzzy inference
system (ANFIS) [2]. Specifically, we focus on a first order
(linear) Takagi-Sugeno-Kang (TSK) type ANFIS.

A benefit of a fuzzy logic neuron/network (FLN), e.g., TSK
ANFIS, is it holds the potential to help realize more explain-
able, interpretable, and ultimately trustworthy AI. There are a
number of ways in which this can occur. For one, it is possible
to insert human knowledge as rules into a FLN. Furthermore, a
FLN can be derived from data then opened to study what vari-
ables, rules, and output combination strategies were learned.
However, as shown by Keller and Yager in [3], fuzzy logic can
be achieved using a multi layer perceptron (MLP), as both
are well-known universal function approximators. A benefit
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TABLE I: Acronyms and Notation

ANFIS Adaptive Neuro Fuzzy Inference System
SP1M Sequential Possibilistic One-Means

N Number of input samples
K Number of input features
R Number of rules in an ANFIS rule-base

N ×K Dimensionality of input dataset
xn Input of feature length K

xn(k) Scalar feature of input vector
wn Antecedent vector of the rule base, of length R
zn Consequent vector of the rule base, of length R

Ark(·) Membership function of rule r
prk Component weight of rule r
yn Output of ANFIS for xn
c Number of clusters

uji Typicality of ith sample to cluster j
vj jth cluster prototype

of an approach like ANFIS, versus [3], is the information is
explicit and centralized versus implicit and distributed. While
numerous approaches exist to learn a fuzzy inference system,
we focus on neural to support “plug-and-play” into existing
deep learners and to maintain homogeneity for the sake of
optimization (e.g., backpropagation and gradient descent).

One challenge with current FLNs, and ANFIS in particular,
is they are not robust. Specifically, when noise is present it
is likely that ANFIS will obtain variables with over inflated
uncertainty: sets that are wider than they need to be. Also
likely is poor placement: misalignment of the learned set
relative to the underlying truth. Due to degenerate optimization
conditions, if ANFIS is initialized with more uncertainty than
what is required, then it is likely that uncertainty will not
sufficiently decrease. Furthermore, it is possible to obtain rules
that decrease the error function, but make little-to-no high level
sense. Also, once a rule is dead (i.e., it never fires), it stays
dead. Meaning, it does not get updated during training due to
no data points contributing to the parameter update for that
particular rule. Last, determining how many sets and rules
are required for ANFIS has proven difficult, and not robust.
As the reader can see, many challenges relate to ANFIS and
FLN learning. The points mentioned above are explained and
addressed in more detail later in the article.

Our contributions are as follows. First, possibilistic clus-
tering is used to produce (data point, typicality),
where uji is the degree to which data point xi ∈ [0, 1] belongs
to cluster j. Note, if uji is low for all j, then a data point is
generally considered an outlier. Second, we extend ANFIS to
use the data point and its typicality degree in learning. To this
end, we explore two ways to exploit this knowledge during
optimization. As we show, the combination of possibilistic
clustering and an extended ANFIS allows us to address many
of the challenges discussed herein.
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Fig. 1: High-level overview of the proposed work. Traditionally, ANFIS is applied to the raw full data. Here, possibilistic
clustering is used to acquire data typicality degrees, which are fed to ANFIS during learning. Blue dots denote noise points
(outliers) and black dots belong to a cluster. Red (and green, respectively) triangles are learned membership functions, where
red indicates rule one and green indicates rule two. Solid lines are ANFIS learned solutions and dotted is extended ANFIS.

Before we delve into ANFIS and our extensions, it is
important to note that ANFIS is not the only neuro-fuzzy
architecture. In [3], Keller and Yager proposed a multi layer
perceptron (MLP) to learn fuzzy logic. In [4], Keller and
Tahani discussed the implementation of a conjunctive and
disjunctive fuzzy logic rules with neural networks. In [5],
Pal and Mitra explored an array of topics on neuro-fuzzy
related to pattern recognition. In [6], Rajurkar and Verma
put forth a deep fuzzy network with Takagi Sugeno fuzzy
inference system. In [7], Blake et al. discussed deep ANFIS
for remote sensing and open source PyTorch codes were
made available at https://github.com/Blake-Ruprecht/Fuzzy-
Fusion. Beyond fuzzy logic, there are numerous other recent
fuzzy neuro investigations; e.g., eXplainable AI (XAI) based
fuzzy integral neural network [8], fuzzy integrals for fusing
heterogeneous architecture deep learners in remote sensing [9],
fuzzy layers in deep learning [10], ordered weighted average
networks [11], to name a few. The point is, past and present
works exist connecting fuzzy set theory and neural networks
at many levels.

The remainder of the article is organized as such. In Section
II we review ANFIS, Section III is a possibilistic clustering
approach, Section IV discusses typicality extended ANFIS,
and Section V is experiments and results. Table I is a summary
of acronyms and notation and Figure 1 illustrates the structure
of our paper.

II. ANFIS

In [2], Jang introduced ANFIS, which was initially based
on TSK type fuzzy inference [12]. An illustrative overview
and input-output depiction of ANFIS can be seen in Figure
2. Let a training dataset have dimensionality, N ×K. While
it is possible to support batch and mini-batch processing in
contexts like gradient descent-based optimization, herein we
focus on sample-by-sample processing for sake of readability.
Let xn(k) denote the k-th feature of sample n, let ANFIS
consist of R rules, and let yn ∈ < be the output of ANFIS.

ANFIS performs three steps on xn to determine yn. The
first two steps, the Antecedent Firing and the Consequent
Component Building, can be run in parallel, and they produce
an antecedent vector, wn, and consequent weighting vector,
zn, respectively. The third step, Aggregation, takes wn and zn,
performs a weighted sum, and it produces the final output, yn.
The lengths of wn and zn are R. The rules in ANFIS follow
the familiar IF-THEN format, each of which has an antecedent
and consequent clause.

Antecedent Firing: consists of calculating the firing
strength of all the antecedent clauses of each rule, wr

n, which
uses a t-norm (herein, we use the product operator) of the
membership values, Ar

k(·), of each input feature, i.e.,

wr
n =

K∏
k=1

Ar
k(xn(k)). (1)

The membership functions Ar
k(·) are unique to each rule and

feature, and can be learned. This step can be thought of as
how well the input vector matches each individual rule.

Consequent Component Building: consists of calculating
the components of the consequent clause of each rule, zrn,
which is determined based on the summation of each input
feature and weight prk, plus a bias term, prbias, i.e.,

zrn =
( K∑

k=1

xn(k)prk

)
+ prbias. (2)

The input feature weight prk is a unique scalar to each rule
and feature, which can be learned. This step can be thought
of as the output each rule would make for the input vector
that perfectly fires the antecedent clauses.

Aggregation Step: consists of calculating the weighted ag-
gregation of the consequent clauses, zn, using the antecedent
clauses, wn, as weights, to produce the output scalar yn, i.e.,

yn =

∑R
r=1 z

r
nw

r
n∑R

r=1 w
r
n

. (3)

https://github.com/Blake-Ruprecht/Fuzzy-Fusion
https://github.com/Blake-Ruprecht/Fuzzy-Fusion
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Fig. 2: This figure illustrates the flow of data in a first order
TSK ANFIS for the case of two inputs and two rules.

This step can be thought of as the combination of the logical
decisions from each rule based on how well the input vector
matched each rule.

A. Semantic Considerations
By far, the most commonly utilized membership function

for ANFIS is the Gaussian,

N(xn(k);µk, σk) = e

(
− 1

2

(xn(k)−µk)2

σ2
k

)
. (4)

While desirable, e.g., for differentiation, simplicity to work
with, nonlinear, and infinite support (theoretically), a semantic
limitation is that the standard Gaussian can only have a
single element with membership value one. From a modeling
standpoint, where one actually cares about the membership
values and their qualitative interpretations, this can prove to
be overly restrictive. While there are numerous functions to
remedy this shortcoming, herein we focus, without loss of
generality, on the trapezoidal membership function,

T (xn(k); Θ) =


0 (xn(k) < Θk

1) or (xn(k) > Θk
4)

1 Θk
2 ≤ xn(k) ≤ Θk

3
xn(k)−Θk1

Θk2−Θk1
Θk

1 ≤ xn(k) < Θk
2

Θk4−xn(k)

Θk4−Θk3
Θk

3 < xn(k) ≤ Θk
4 .

(5)

B. ANFIS Optimization
For sake of article completeness, Table II are the partial

derivatives for ANFIS, based on a first order TSK model. The
reader can refer to [2], [7], and [13] for full mathematical
explanation and derivations.

C. Open Source Codes
For reproducible research, in [7] we provided free PyTorch

codes for shallow and deep ANFIS; https://github.com/Blake-
Ruprecht/Fuzzy-Fusion. For the current article, we have
placed our possibilistic clustering extended ANFIS at
https://github.com/Blake-Ruprecht/ANFIS-SP1M.

TABLE II: ANFIS Derivatives for Gradient Descent

∂yn
∂zrn

=
wrn∑R
i=1 w

i
n

∂yn
∂wrn

=

∑R
j=1,j 6=r w

j
n(zrn−z

j
n)

(
∑R
i=1 w

i
n)2

∂yn
∂pr
k

= ∂yn
∂zrn

· xn(k) = wrn∑R
i=1 w

i
n
xn(k)

∂yn
∂Ar

k
(·) =

(
∂yn
∂wrn

)(∏K
j=1,j 6=k A

r
j (xn(j))

)
∂yn

∂Θ
r,k
m

=
(

∂yn
∂Ar

k
(·)

)(
∂Ark(·)
∂Θ

r,k
m

)

∂N(·)
∂µ

= exp
(
− (x−µ)2

2σ2

)(
x−µ
σ2

)
∂N(·)
∂σ

= exp
(
− (x−µ)2

2σ2

)(
(x−µ)2

σ3

)

D. Limitation of Traditional ANFIS

ANFIS [2] is a powerful tool, but not without flaw. While a
number of shortcomings have been identified, and addressed
to varying degrees, we highlight a few relevant limitations.

1) Noise and Over Inflated Uncertainty: Noise pulls the
estimated membership functions away from their true state
of nature. For example, consider a trapezoidal membership
function. Noise in the data will increase the core region
(membership value one) and the support (membership value
greater than zero) will widen. From a semantic standpoint, this
means noise has the impact of “inflating” or creating greater
uncertainty than what actually exists.

2) Initialization: A number of works have been proposed
to estimate the number and parameters of rules from data.
ANFIS, by default, requires the number of rules, and number
of antecedents per rule, to be specified before optimization
can begin. ANFIS is not a structure learning algorithm, it is
a parameter estimation algorithm. Furthermore, what values
should the membership functions (and TSK coefficients) be
set to initially, i.e., how should ANFIS be initialized? This
selection can have an impact on the result in the hands of an
algorithm like stochastic gradient descent.

3) Non-Decreasing Uncertainty: An underappreciated as-
pect of ANFIS is its inability to reduce uncertainty during
learning. Consider two inputs and two rules. Let each rule
correspond, antecedent-wise, to an underlying Gaussian dis-
tribution and let these clusters have no overlap and sufficient
separation. Suppose that the standard deviations are initialized
to three times the true standard deviation. This is a simple
example. The point is, if no data points exist in the space
between the two underlying clusters, then there is no part
of ANFIS learning that naturally tries to reduce uncertainty.
There are no errors driving the sets to be as specific as possible
(see Proposition 2). From a control standpoint this might
be desirable if the goal is to partition the underlying space.
However, if the goal is to listen to the data and to have the
membership functions fit the underlying samples, then this is
problematic.

https://github.com/Blake-Ruprecht/Fuzzy-Fusion
https://github.com/Blake-Ruprecht/Fuzzy-Fusion
https://github.com/Blake-Ruprecht/ANFIS-SP1M
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4) Once Dead, Always Dead: Consider an ANFIS with one
or more rules initialized such that their membership functions
do not fire, i.e., return a rule firing strength greater than
approximately zero for any sample in the training data. Here,
we refer to such rules as dead. In ANFIS, once a rule is
dead, there is little-to-no force (sufficiently scaled gradient)
that drives that rule towards a location in space to remedy
the problem (see Proposition 1). This is a massive limitation
with respect to learning quality ANFIS solutions. It places a
large burden on the initial position of the antecedent fuzzy sets
and/or it requires us to initialize with wide uncertainties which
conflicts with the above non-decreasing uncertainty challenge.

In summary, this subsection exists to raise awareness of
ANFIS limitations that need addressing. The combination of
possibilistic clustering and modified ANFIS learning leads to
more robust neuro fuzzy logic learning.

III. SEQUENTIAL POSSIBILISTIC ONE MEANS (SP1M)

The sequential possibilistic one means (SP1M) algorithm
[14] is based on the possibilistic c-means (PCM) algorithm
[15]. The PCM abandons the membership sum-to-one con-
straint in the fuzzy c-means (FCM) [16] algorithm and it has
been shown to be robust against outliers. Each cluster in PCM
is independent of the others and the user and/or algorithm may
have to address coincident clusters. The SP1M was created to
combat the coincident clusters problem of PCM by generating
one cluster at a time until all the “dense” regions are found.

Pseudocode for the latest version of SP1M is shown in
Algorithm 1, where X is the input samples, c is the estimated
input for cluster number, ε is the threshold, m is the fuzzifier,
K is defined to be the number of points whose maximum
typicality is smaller than 0.5. Note that the (*) detail of
dynamic η computation in Algorithm 1 is discussed in [14].

Algorithm 1 SP1M Pseudocode

1: INPUT: X , c, ε
2: OUTPUT: U : final typicality partition
3: OUTPUT: V : final cluster prototypes
4: Initialize U , V as empty
5: while j++ < c and #(P1M) < K do
6: repeat . loop to find a suitable cluster
7: Pick v ∈ X with probabilities Eq. 6
8: repeat . loop to execute P1M
9: Compute ηj dynamically (*)

10: Compute typicality uji = 1

1+

(
d2
ji
ηj

) 1
m−1

11: Compute cluster center: vj =
∑N
i=1 umjixi∑N
i=1 umji

12: until ∆vj < ε
13: until minw∈V ||vj −w|| ≥ 2η
14: Append uj to U
15: Append vj to V
16: end while

In SP1M, the cluster centers are not initialized purely
randomly. They are initialized from probabilities based on the

typicalities of the previously found clusters. The initial cluster
centers are picked from dataset X with probabilities

p(xi) =



1

n
if j = 1

0 if max
k=1,...,j

uki > 0.5

1−maxk=1,...,j uki

N −
∑N

s=1 maxk=1,...,j uks
otherwise

(6)
The returned matrix U from the SP1M is the typicality matrix
that measures how “typical” a particular point is to each
cluster, that is, how close the point is to each cluster prototype.
Outliers have a large distance to all the existing clusters so that
they naturally have low typicality to all clusters. SP1M open
source MATLAB code: https://github.com/waylongo/sp1m-de.

IV. POSSIBILISTIC CLUSTERING INFORMED ANFIS

A. Initialization

Herein, we do not rely on random ANFIS parameter initial-
ization. ANFIS is a supervised learning algorithm. First, the
number of underlying clusters must be determined from the
data (we will create one rule for each underlying cluster). Next,
user-specified membership functions are fit to each cluster. In
the case of a Gaussian, we calculate the respective mean and
standard deviation. In the case of a trapezoidal membership
function, we set the core to three standard deviations and
the support to five standard deviations. The point is, the user
has flexibility over what function to use and how to best
fit the antecedent clause membership functions to the data.
Next, once the membership functions are estimated for each
cluster, we use the least means squared (LMS), like Jang
[2], to estimate the ANFIS consequent weights (prk). Note,
in traditional ANFIS the user selects the number of rules
and antecedents per rule. In our possibilistic clustering-based
ANFIS, SP1M informs us about the number of underlying
clusters, which is used to pick the number of rules.

B. Method 1: Pre-Processing or Data Filtering

Our first proposal is to use the possibilistic clustering
algorithm results to pre-process the training data. Training data
typicalities are generated using the SP1M algorithm. These
typicalities are then analyzed, and any typicality below a user
defined threshold, Γ, are removed from the training data.
Specifically, we take the max typicality of a data point to
all clusters, ti = maxj=1,...,c uji, i.e., the strongest degree
that it belongs to any cluster. This process has numerous
benefits. First, there are fewer data points, which lets an
algorithm train faster. Second, there are fewer outliers, which
improves initialization and helps us combat challenges like
non-decreasing uncertainty. However, this procedure is crisp in
the fact that it partitions data into use/not use, versus utilizing
the degree to which a data point is an outlier. Furthermore,
results will likely vary based on parameter Γ.

https://github.com/waylongo/sp1m-de
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C. Method 2: Gradient Scaling

Our second approach is to use SP1M typicalities to modify
the ANFIS algorithm itself, not the data presented to it. Specif-
ically, we modify the learning algorithm. Herein, gradient de-
scent is used to optimize ANFIS. The criteria function used is
the sum of squared error (SSE); which leads to the derivatives
in Table II. We first summarize our data point typicalities
according to their max typicality, ti = maxj=1,...,c uji ∈ [0, 1].
Next, we scale the partials, i.e.,[∂yn

∂zrn

]
scaled

= ti
∂yn
∂zrn

. (7)

Thus, if a sample has a high degree of belonging to a cluster
then ANFIS operates “as is”. However, outliers have a low
typicality, which dampens their impact on learning. Note, as
this is uniform scaling, i.e., all gradients are scaled the same
way, it does not change the direction of the gradient, just its
magnitude. In summary, Method 2 is different from Method 1
as it utilizes the typicality information to scale gradients during
learning, rather than partition data during pre-processing.

as it instead listens to the data with respect to their individ-
ual degrees of importance.

V. PRELIMINARY EXPERIMENTS AND RESULTS

In this section, we demonstrate a set of controlled ex-
periments to show the before and after effects of clustering
informed versus traditional ANFIS. Synthetic data is used
because we can control the conditions and range and we know
the answer. We use two inputs/dimensions because the results
can be visualized. Furthermore, we focus on the quality of the
results. ANFIS, as is, can be used to achieve minimum error
relative to a user specified criteria function. By quality, rather
than accuracy or an index like F1 score, we specifically mean
generating fuzzy sets and rules that fit the data well. For our
synthetic experiments, this quality will be evident in how well
the rules fit the underlying clusters and ignore noise, since we
can use this information to present to a decision maker or use
for a purpose such as eXplainable artificial intelligence.

A. Experiment 1: Low Amount of Noise

In Experiment 1, we focus on a dataset that should have
five rules, which is intended to model a few close rules
whose noise can influence each other. Furthermore, five
rules were selected because it can be visualized; i.e., there
are not too many points and overlaid resulting clustering
information to inhibit the readers viewing and understand-
ing. Each cluster has 300 samples and 10% of the data
is noise. Specifically, noise samples are generated beyond
four standard deviations of the underlying generative Gaus-
sian clouds. The five class (rule) centers are [0.080, 0.501],
[0.074, 0.680], [0.496, 0.077], [0.918, 0.679], [1.151, 0.903],
with corresponding x and y dimension standard devia-
tions of [0.033, 0.0256], [0.0353, 0.0193], [0.0397, 0.0148],
[0.0384, 0.0091], [0.0251, 0.0272]. It is worth noting that we
selected close, but not overlapped clusters because in a real
scenario if two clusters/rules overlap, it makes less sense.
Meaning, two rules with similar IF but different THEN

counterparts. A single data point could potentially belong
to multiple different rules. Such a scenario is semantically
confusing. The number of features may be inadequate to
properly separate rules, or something else may be causing
issues. Figure 3 shows Experiment 1.

Figure 3 shows the result of traditional ANFIS, clustering-
based pre-processing, and gradient scaled ANFIS. Note, in
traditional ANFIS one has to either select or engage in some
external method to pick R. Herein, we use SP1M to select
R, which provides ANFIS more benefit than what the core
algorithm affords. Clearly, clustering-based pre-processing
produces better rule structures. Namely, the core (membership
value one) region is a tight fit to the underlying data and the
support (membership value greater than zero) has a reasonable
footprint; specifically, it does not include all of the noise. On
the other hand, traditional and gradient scaled ANFIS have
over inflated cores and support regions. Furthermore, both have
a problem with rule placement for the two close clusters (green
and bluegray). Overall, typicality-based pre-processing yields
a good fit of the underlying data, making the resulting fuzzy
sets more faithful and interpretable descriptions of the data.

B. Experiment 2: Moderate Amount of Noise

In Experiment 2, we keep the same dataset, allowing Ex-
periment 2 to be compared to Experiment 1. The only thing
that has changed is that 25% of each cluster’s data is now
noise, compared to 10% in Experiment 1. The reason for
Experiment 2 is to observe the impact and behavior of the
proposed approaches in light of a greater amount of noise.
Figure 4 shows the dataset.

Figure 4 also displays the result of the three methods. The
take away is as follows. As expected, an increased level of
noise impacts ANFIS, but the power of possibilistic cluster-
ing is able to address and overcome shortcomings, namely
typicality-based pre-processing.

C. Additional Experiments

Figure 5 shows nine additional arbitrary ANFIS experiments
with varying numbers of R, C, and cluster overlap. The
reason for these mini experiments is to give the reader a
feel for performance in different contexts. As can be seen,
typicality weighted ANFIS is more resilient and its largest
shortcoming is if SP1M can estimate the true underlying
generative cluster structure. While we have only demon-
strated results for two dimensions and a few clusters (2 ≤
C ≤ 10), the reader can download and experiment with our
open source codes, https://github.com/Blake-Ruprecht/Fuzzy-
Fusion and https://github.com/Blake-Ruprecht/ANFIS-SP1M.

VI. INSIGHTS AND SUMMARY

Experiments 1 and 2 highlight the benefit of using possi-
bilistic typicality degrees in neuro fuzzy logic. This allows
us to combat a number of underlying qualitative concerns
about a learned neuro fuzzy logic solution. However, it was
our expectation that Method 2, gradient scaling, would be the

https://github.com/Blake-Ruprecht/Fuzzy-Fusion
https://github.com/Blake-Ruprecht/Fuzzy-Fusion
https://github.com/Blake-Ruprecht/ANFIS-SP1M
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Fig. 3: Experiment 1. Each class is color coded. The traditional and gradient scaled ANFIS trapezoidal membership functions
are shown in grey. Solid is the core and dashed is support. Red solid and dashed lines are clustering-based pre-processed ANFIS.
The data points are scaled based on typicality (note that the size has a lower bound to prevent points from disappearing).

Fig. 4: Experiment 2. Each class is color coded. The traditional and gradient scaled ANFIS trapezoidal membership functions
are shown in grey. Solid is the core and dashed is support. Red solid and dashed lines are clustering-based pre-processed ANFIS.
The data points are scaled based on typicality (note that the size has a lower bound to prevent points from disappearing).
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top performer. Because this is not the case, we dug deeper
into ANFIS. Consider the update equation for a membership
function parameter,

∂yn

∂Θr,k
m

=

(∑R
j=1,j 6=r w

j
n(zrn − zjn)

(
∑R

i=1 w
i
n)2

)
× (8a) K∏

j=1,j 6=k

Ar
j(xn(j))

× (8b)

(
∂Ar

k(·)
∂Θr,k

m

)
. (8c)

Consider the following two scenarios.

Proposition 1. Term 1 (Equation 8a) results in a zero magni-
tude gradient (Equation 8) for rule r when it is the only rule
that fires, i.e., wr

n > 0, and ∀j ∈ {1, ..., R}, j 6= r, wj
n = 0.

Proof. The numerator in Equation 8a is all rules other than
r. As each of these rules have wj

n = 0, the numerator is zero
and the denominator is not. Thus, Equation 8 is zero.

Proposition 1 can be interpreted as diminishing the gradient
when the rules are properly separated with no overlap. This
means that the conditions for Proposition 1 are constantly
being met each time a data point that belongs to rule r is being
trained on. This prevents learning from occurring for the rule
membership parameters that the training data matches with.
This is a drastic result if the goal is to make the distribution
fit the underlying data.

Proposition 2. Term 2 (Equation 8b) results in a gradient
(Equation 8) whose magnitude is 0 when a data sample (n) is
not in a rule (r), i.e., wr

n = 0.

Proof. If data sample n is not covered by rule r, then
Ar

j(xn(j)) = 0. As each of these terms are zero, their product
(and other t-norms at that, e.g., the minimum) is zero. As a
result, Equation 8 is zero.

Proposition 2 has a number of ramifications. For example,
if a data point does not result in a rule firing strength greater
than zero, then that rule is not updated. While by itself, this
does not seem overly alarming, consider the case of a rule
initialized to a region corresponding to no data points. The
rule will never get updated. This is the definition of “once
dead, always dead.”

These two propositions highlight two common cases. More
scenarios that give rise to diminishing-to-dead gradients can be
identified. The point is, it is clear why our typicality weighted
and initialized procedure performs best. Until factors like these
are remedied with ANFIS, a procedure like gradient scaling,
while elegant in design, is rendered ineffective.

VII. CONCLUSION AND FUTURE WORK

In this article we explored the role of possibilistic clustering
to generate data point typicality degrees to improve challenges
in ANFIS, a neuro fuzzy logic learning tool. Specifically,
we used SP1M, which helps us combat coincident clusters
in PCM, and it allows one to support, if desired, realtime,

online learning and/or Big Data. We explored two possible
methods, pre-processing data by removing SP1M identified
outliers, and gradient scaling during ANFIS learning utilizing
SP1M typicalities. Pre-processing had the best results, namely
due to a diminishing/dead gradient shortcoming in ANFIS.

In future work, we will take this preliminary investigation
and explore real-world applications of neuro fuzzy logic. We
will also find a way to remedy the diminishing/dead gradient
problem in ANFIS, which should make gradient scaling the top
performer. Other future work will include taking definitions of
what constitutes a “good logic explanation”, and folding that
into the learning algorithms to promote better explanations.
Last, once our work related to understanding shallow neuro
fuzzy logic networks is mature, we will open our processes
up to deep inference nets.
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